STOCHASTIC OPTIMIZATION OF A HYDROELECTRIC
RESERVOIR USING PIECEWISE POLYNOMIAL
APPROXIMATIONS

BERNARD F. LAMOND

Département Opérations et systemes de décision,
Faculté des sciences de I'administration,
Université Laval,

Québec (Qc) Canada GIK 7P4

e-mail: Bernard. Lamond @fsa.ulaval.ca

ABSTRACT
We proposc a method for optimizing a single hydro-clectric reservoir using a pieccwisc polyno-
mial approximation of the future value functions. Unlike previous methods based on splines, we
avoid discretizing the inflow distribution. Instead, we carry out the cxpectation step of dynamic
programming using an exact, easy-to-evaluate formula for the integral of a piccewise polynomial
function. We then apply our method to solving a model which assumes a piccewise lincar reward
function of the cnergy produced, and takes into account the turbine head cffects.

Keywords: Markov decision processes, stochastic dynamic programming, piccewise polynomial
approximation, optimal reservoir management, cnergy planning.

RESUME

Nous proposons une méthode pour optimiser un réservoir hydro-électrique unique cen utilisant
unc approximation polynomiale par morceau des fonctions de valeur future. Contraircment aux
méthodes précédentes basées sur les splines, nous évitons la discrétisation de la distribution des
apports. Ala place, nous effectuons I'étape du caleul de I’espérance en programmation dynamique
en utilisant une formule cxacte et facile & évaluer pour I'intégrale de la fonction polynomiale par
morceau. Nous appliquons cnsuite notre méthode a la résolution d’un modele qui assume unc
fonction de récompense linéaire par morceau de I’énergie produite, ct tenant compte de Peflet de
hautcur de chute des turbines.

Mots-clés : Processus de décision markoviens, programmation dynamique stochastique, approxi-
mation polynomiale par morceau, gestion optimale des réservoirs, planification énergétique.

1. INTRODUCTION

We consider a discrete time, finite horizon, stochastic optimization model for a hydro-electric
system with a single reservoir. We assume the rewards from clectricity production arc given
by a concave, piecewise linear function of the energy produced. The cnergy produced may
depend on the storage as well as the discharge, thus allowing turbine head effects to be taken
into account. Sec Lamond and Boukhtouta (1996), Lamond and Boukhtouta (2001) and the
references thercin for surveys of models and methods for stochastic reservoir optimization.

As in the usual stochastic dynamic programming (DP) approach (sec, e.g., Puterman (1994)),
we define the following random variables for t = 1,..., 7T

S, = statc at beginning of period ¢
A

R, = immediate reward reccived in period 7.

action taken in period ¢

il

Let also Sy, be the terminal state. Realizations of the state and action variables are denoted
s; and a,, respectively, with state space S and conditional action set 4,(s,) when S, = s, € 5.
We define the immediate reward functions

Reed. Oct. 2001, Rev. Oct. 2002, Acc. Feb. 2003 INFOR vol. 41, no. 1 Feb. 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52 B.I. LAMOND

ri(si, a;) = E[R, | St =s,A = a]

for t = 1,...,T and the terminal reward function Vi (s741). Then the functions V,(s,) of
optimal, expected cumulative rewards from period ¢ onward are given recursively by Bellman’s
principle of optimality, for t = 7,7 —1,...,1:

Vi(s)) = . l(n;,li(‘ y F(Sesar) + BWigi (sr, ay) (D

where f3 is a discount factor and

Wi (s, ap) = E[ Vi (See1)

S =54, = a,]. 2)

A simple solution method is to discretize the state and action variables s, and a,, and to
assume discrete transition probabilities, so that equations (1, 2) can be solved using discrete
dynamic programming. A very fine discrctization is usually required in order to obtain a
satisfactory accuracy, however, resulting in a large amount of computation (Kitanidis and
Foufoula-Georgiou (1987)). This approach is, in fact, impractical for solving multidimensional
models of systems with many reservoirs. Nonetheless, some authors have proposed aggregation
methods for multireservoir systems that solve a sequence of problems with two reservoirs
(Turgeon (1980), Turgeon (1981)) or threc reservoirs (Archibald et al. (1997)). In this context,
the small models ought to be solved quickly yet accurately, because they have to be solved
repetitively. Here, we propose an approach for solving a one dimensional problem which is
faster and more accurate than discrete DP.

One such approach is to use continuous state and action variables and to approximate the
functions V,(s;) using, for example, polynomial or piecewise polynomial functions (Chen et al.
(1999), Foufoula-Georgiou and Kitanidis (1988), Johnson et al. (1993), Philbrick and Kitanidis
(2001)). When the function is suitably smooth, spline approximations are used to preserve
continuity of the first derivative at the grid points. Then eq. (1) is solved by a continuous,
nonlincar programming method, and the expectation in eq. (2) is evaluated using a Gaussian
quadrature rule for numerical integration, which corresponds to a coarse discretization of the
distribution of the random variables (for example, expectations arc computed using only two or
three quadrature points in Chen et al. (1999), Foufoula-Georgiou and Kitanidis (1988), Johnson
et al. (1993), and Philbrick and Kitanidis (2001)).

Here we also use continuous state and action variables and a piecewise polynomial approx-
imation for V,(s,). However, due to the piecewise linear revenues, our function V,(s,) is not
as smooth as in Chen et al. (1999), Foufoula-Georgiou and Kitanidis (1988), Johnson et al.
(1993), and Philbrick and Kitanidis (2001), hence their (coarse) Gaussian quadrature scheme is
not suitable for computing the expectation in our case. Therefore, we derive an exact formula
for efficiently evaluating the cxpectation function Wi (s, a0) of eq. (2) using a continuous
distribution instead of a coarse discretization. Our approach extends the work of Drouin et al.
(1996) and Lamond and Lang (1996), where a method for efficiently computing the cxpectation
of a piecewise linear function is given for a discrete distribution over a fine grid. Here, we
extend this result in two ways: we allow (i) piecewise polynomial functions of higher degrec
and (i) continuous distributions.

Moreover, we extend the results of Gessford and Karlin (1958) and Lamond ct al. (1995)
on the structure of optimal solutions under piccewise linear rewards. In particular, we show
that the optimal decision rules are always determined by two critical points, say daj; and ay,,
even in the presence of significant turbine head effect. Previous results (Drouin et al. (1996),
Gessford and Karlin (1958), Lamond and Lang (1996), Lamond et al. (1995)) assumed constant
turbine efficiency, independent of storage, which is considered unrealistic in practice for many
hydroelectric systems (at the exception of run-of-the-river plants). We exploit this result to
derive a piecewise polynomial approximation of the function V,(s,) in which the points where
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the function is not smooth are taken as “not-a-knot” nodes (sce, e.g., De Boor (1978)), and we
present numerical results showing that this approach is much more adequate than the ordinary
spline functions when the revenues are piccewise linear, as we assume in our model.

Some authors have also addressed the problem of approximating the value function of a
multireservoir system by a piccewise lincar function, using lincar programming and Benders
decomposition: Pereira and Pinto (1991) assume the reward is proportional to the encrgy pro-
duced and Archibald et al. (1999) assume the reward is a concave, piecewise lincar function of
energy. Morcover, some cxtensions of the work of Gessford and Karlin (1958) to multirescrvoir
systems were also examined in Lang (1994) and Archibald ct al. (2001). Unlike the present
paper, these studies all assume a constant head on the turbines.

The paper is organized as follows. In §2 we derive a formula for computing the exact
expectation of a piecewise polynomial function. In 83, we give a model of a single reservoir
with stochastic inflows and piccewise linear revenues of hydro-clectric production. In 84 we
derive the structure of optimal solutions. In §5 we summarize our DP algorithm using the
structure of optimal solutions and the expectation formula. Then, a numerical illustration is
given in §6, with concluding remarks in §7.

2. PIECEWISE POLYNOMIAL EXPECTATION
To illustrate the difficulty with Gaussian quadrature rules when the function to integrate is
not smooth enough, we evaluate the expectation of the function v(X) = |X| under a standard
normal distribution. We see easily that
(o.¢]
1 2
= / —eﬂmﬂ{x dx = v2/nt = 0.80.
J—oo V 21 l /

Using Gaussian quadrature with 3 nodes as in eq. (E5) of Foufoula-Georgiou and Kitanidis

(1988), we obtain

055 §V(O)+é {v (—ﬁ)w(ﬁﬂ = 1/v/30.58.

The absolute error is = I — Q3 = 0.22 and thus the relative error is 28%, which is hardly
negligible. See Lamond and Bachar (1998) for a numerical study of the effect of discretization
on the optimal value function V,(s;) under an infinite planning horizon. We now present a
method to integrate exactly a piecewise polynomial function (which is not necessarily smooth
at the break points). The following notation is used in the sequel:
x Ay = min(x,y)
x Vy = max(x,y)
)"

Consider a continuous, nonnegative random variable X with density function f(x). For k =
0,1,2,... and x > 0, define the cumulative functions

I

max(x, 0).

) = / Fea(n)dy, 3)
JO

where F_;(x) = f(x). It is convenient to define Fy(x) = 0 for all x <0. We will suppose these
functions can be computed accurately and efficiently (this can be done, for instance, if some
representation has already been constructed, analytically or by a numerical method, and can
be used, say, by calling a library subroutine). An example is given in 86.

Suppose v(x) is a piecewise polynomial function of degree n over its domain [0, U], and let
the numbers 0 = by < by < by < -+ < by, < by = U be the break points. Let also the ith
polynomial be

e )

k=0
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with its € th derivative
n

k!
O (ry — (k) k—€
PO k§=eﬁ =, (s)

for € = 0,...,n. Here c,(") is the coefficient of x* in the ith polynomial p;(x). Of course,
PO®x) = pi(x) and p{O(x) = 0 for € > n. Then we can write

m+1

vx) = gi), (6)
i=1
where i) if b <x<b
3 — i pe=il N S0
&) { 0 else. @)

The integration method is based on the following results.

Lemma 2.1
Fori=1,...,m+1 and a,x >0,

n

| piarsymra = 310 0@ rnrew, ®)
0

€=0

Proof
For € =0,1,...,n+1, define the functions

X
i / B
0

We want to find H{”(a,x). Now for £ = n+ 1, we have trivially H"™D(a,x) = 0. For € <n,
integration by parts yields directly

H(O(a,) = p{a + x)Fe (x) — H*V(a, x). ©)
Successive application of eq. (9) for € =n,n—1,...,0 leads to eq. (8). O

Lemma 2.2
Fori=1,2,....m+1and 0 <a<U, define

U—a
e jo 8@+ 96 &. (10)

Then

wi@) = (=D [pOG)Febi — a) — pObi- ) Fe (biey — ). (1)
€=0

Proof
From eq. (10), a simple change of variable gives

U
= / (Ot — a)dt.

We claim this is equivalent to

aVb;
wi(a) = / pi)f (t —a)dt. (12)

Vbi—y
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Figure 1: Expectation of a polynomial piece
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b%‘—1 bi a bz:—l a b; a bi-1 b;
(’L) a > b (11,) b1 <a< b; ('LZ%) a < bi_y

Indeed, according to eq. (7), gi(1) = 0 for t < b;; and ¢ > b;. There are three cases to consider:
(i) a > b;, (i) bi_; < a < b; and (iii) a < b;_; (see Figure 1). In case (i), eq. (12) gives
wi(a) = 0, which is the correct value. In cases (if) and (iii), eq. (12) gives the upper limit
b; and the lower limits a and b;_; respectively, as required. Changing back to the original
variable, we get

(bi—a)* (bi-1—a)*
wi(a) = / pila+y)f(y)dy — /0 pila+y)f(y)dy.

0

The result follows from Lemma 2.1 after we drop the positive parts in eq. (8) because
Fe(b; —a) = 0 for a > b;, giving eq. (11).

Theorem 2.3
For 0 < a < U, and with v(x) given in eq. (6), define the function of expected values

w(a) = E[v((a+X) AN U)]. (13)
Then i
w(a) = [1 — Fo(U — a)lv(U) + Z wi(a), (14)

i=j(a)

where j(a) = min{i : b; > a}.

Proof
By definition of expectation, we have

il = /o W(@+y) AUY () dy

00 U—a
vy [ fordy+ /0 W@+ O)dy.

U—a

This gives eq. (14) by definition of v(x) in eq. (6) and w;(a) in eq. (10), and noting that eq.
(11) implies w;(a) = 0 for i < j(a), because Fe(b; —a) =0 for a > b;. See Figure 2. U

We now describe the integration procedure. For convenience, we will refer to it as the “PRIM
algorithm” because it uses the primitives of the density function. It requires three major steps.
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Figure 2: Expectation of a piecewise polynomial function
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Algorithm PRIM for Piecewise Polynomial Integration

I. For a given probability density function f(x), obtain the indefinite integrals analytically, if
possible. Otherwise, tabulate the functions Fe(x) in the interval [0,U), for € = 0,...,n,
using a numerical intcgration method such as Simpson’s rule, and construct, e.g., a cubic
spline representation to interpolate £y (x) at arbitrary points x € [0, U].

2. For a given piccewise polynomial function v(x) with break points b;, use eq. (5) to evaluate
the derivatives p{(b;) and ])5‘")(17,-_]), fori=1,...,m+1land € =0,...,n

3. To evaluate w(a) at an arbitrary point «, use eq. (11) and eq. (14).

In this procedure, step | is a preparatory chore that may involve analytical intcgration,
numerical analysis and computer programming. An example is given in §6 for the gamma
distribution. At step 2, the derivatives p{“)(h;) and pO(b; 1) are tabulated beforehand using
O(nn?) arithmetic operations. At step 3, 1o evaluale w(a) at a given point a, we nced to cvaluate
each of the functions Fy, ..., F, at most m+ | times, and next O(mn) arithmetic operations are
required to compute w;(a) and w(a). Usually, step 3 is repeated for several values of a.

3. STOCHASTIC MODEL FOR ONE RESERVOIR

Our notation is compatible with Drouin ct al. (1996), Lamond and Lang (1996), and Lamond
et al. (1995). Our model is basically the same, although our variables are continous as in
Gesslord and Karlin (1958). Our model differs in that it allows turbine head cffects, as in
Lamond and Bachar (1998). The system comprises onc reservoir and onc hydro-plant. We
suppose the reservoir has a limited storage capacity of volume U, while the hydro-plant has
unlimited production capacity. Decisions have to be made at the beginning of every 7 periods
in the planning horizon. For 1 = 1,..., 7T, let S, denotc the volume of water in storage in
the reservoir at the beginning of period ¢ and available for clectricity production, and let 7,
denote the volume of water released through the turbines during period ¢. Then the drawdown
volume, after turbine relecases but before natural inflows are added, is A; = S, — Z,. Let also
D, be the random variable giving the volume of water added to the contents of the reservoir
during period ¢ from uncontrolied natural inflows.

Morcover, we make the following three assumptions: (i) the volume D, is not available for
clectricity production until period 1+1, (if) any volume of water in excess of the storagce capacity
is lost, without electricity production, and (iif) the random variables Dy, ..., Dy arc independent
and have continuous distributions. With state and action variables S, and A,, respectively, the
system dynamics are thus described by the following transition equation,

S = (A +D) A U. (15)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



STOCHASTIC OPTIMISATION OF A HYDROELECTRIC RESERVOIR 57

The state space is S = [0, U] and the set of allowable actions in period 7, given S, = s, is
A(s) = [0, 5]
The amount of electricity £, produced during period 7 is given by the function [2(s, ) of
the stored volumes S; = s and A, = a. Herc we ncglect the effect of the random inflows ),
on the production of period 7. Suppose the turbine efficiency is a function B(x) of the stored
volume x. Then ,
E(s,a) = / B(x) dx = O(s) — O(a), (16)

Ja
where ©(x), the primitive of B(x), gives the potential cnergy of a stored volume x. For cxample,
in the special case when the turbine efficiency is a constant 6y independent of the stored
volume, we have simply FE{s,a) = 8y(s — a), as in Drouin ct al. (1996), Gessford and Karlin
(1958), Lamond and Lang (1996), and Lamond et al. (1995). A slightly more realistic approach
assumes, as in Lamond and Bachar (1998), the turbine cfficiency is an affinc function of storage

l()(S) = 9() & G,S,

where 0y and 0, are given constants. Then

O(s) = Bys + 9—21.\'2, (17)
so that E(s,a) is a quadratic function of s and a. Polynomials of degree higher than two arc
often used in the literature as well. See, c.g., Boukhtouta and Lamond (2001), Marifio and
Loaiciga (1985), and Soares and Carneiro (1990).

We assume the revenue from sales of clectricity in period 7 is given by a piccewise linear
function

Sl = {hl,E if 0 <E <,

: hllQl+h’21(E4Ql) if E 2 Qla

where £ is the amount of hydro-clectricity produced during the period. Under the assumption
;> hyy, this corresponds to a (lucrative) primary market with regular price Ay, and limited
demand @, and a secondary market for excess production with unlimited demand but at a
discounted price fiy,. The reward R, for period ¢ is therefore determined by the function

(18)

(s, ar) = Py (E(S,,a,)) = Pr (G)(Sz) = @((’1)> . (19)

As in the introduction, we assume there is a terminal reward function Vi (s74) and we define
the functions V,(s;) recursively, using the dynamic programming equations (I, 2).

Overall, our modelling assumptions have the same limitations as in Drouin et al. (1996),
Gessford and Karlin (1958), and Lamond ct al. (1995), cxcept that our model also allows the
turbine head variations to be taken into account. As pointed out in Lamond ct al. (1995), limited
turbine capacity could also be included in the model by adding a third interval in ¢q. (18) and
setting to zero the price of energy in excess of production capacity. We also argue that it is
reasonable to neglect the impact of assumptions (i) and (i) about the natural inflows if, for
instance, the planning periods arc short enough so that the mean inflow is small compared to
the storage capacity of the rescrvoir. Moreover, the numerical study of Tejada-Guibert et al.
(1995) suggests our independance assumption (ifi) is justified as well in the context of planning
hydropower production (we note here that our method of analysis could also be used when
seasonal variations are taken into account).

We want to find an optimal policy T = (y1,...,¥r) that maximizes V,(s1) for all sy € 10,U].
Each decision rule 7,(s,) is a function such that action ¢, = ¥,(s;) 18 sclected in period ¢ if the
storage at beginning of period 7 is S; = s;. The optimal decision rule y,(s,) gives the action «,
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maximizing eq. (1) for every state s,. Thus our optimization algorithm must construct the 7'
functions i, ..., yr. Now from eq. (15), we can write the expectation in eq. (2) as

Wi (sr, ap) = Wii(a) = E[Vi1((a, + D) AU (20)

This is the same expectation as in eq. (13) with X replaced by D,. Hence we can compute
Wii(a,) using Theorem 2.3, provided we approximate V,.;(-) by a piecewise polynomial
function.

4. STRUCTURE OF OPTIMAL SOLUTIONS

The optimal solution V(s,) of the dynamic programming equations (1, 2) cannot be obtained
in closed form, although its essential propertics can be derived analytically. A closed form
solution exists, however, for the optimal decision rule Y:(s:). We now derive this closed form
and use it to describe the structure of the optimal solution V,(s,) as well as the form of an
adequate representation of Vi(s;) by a piecewise polynomial approximation. In the special case
when the turbine efficiency is constant, i.c., 9(s) = 8, our solution reduces to the results of
Gessford and Karlin (1958), and Lamond et al. (1995). Hence we extend previous results to
the more realistic case when turbine efficiency varies due to head effects.

Itis convenient to make a change of variables and express the state and action variables in
potential energy units instead of storage volume. Let x, = O(s,) and v, = O(q,) be the new
state and action variables, respectively. Using the inverse transformation ©~'(-) to convert from
potential energy to volume, we also define the functions

vi(x) = Vi(sy) = V(@7 (x))

and
Wit () = Wi (a) = Wr+|(®”1(.)’1))-

Then the Bellman equations (1-2) become respectively

Vi) =s max | (O (x), 07 3)) + Bwei ()

Y€[0,x,

W1 (V1) = E[vi (9(64()’1) + D) ANOU))],

where we have used eq. (20) and D, is the random variable of natural inflows in period t. Now,
for an arbitrary constant d > 0, define the function

za(y) = 0O (y) +d).

Then z,(y) A®(U) is the potential energy in the reservoir after an inflow of d units of water is
added to an initial storage of potential energy y. In the sequel, we make the further assumption
that the head function %(a) is differentiable and that the ratio 19’(51)/13((1) is a nonincreasing
function of a for all @ € |0, U]. This condition does not secem to be very restrictive in practice
because one can show easily that it holds, in particular, when the head function ®(«) is concave
increasing. In Lamond (2001), the latter condition is shown to hold for a number of examples
of reservoir shapes in which the reservoir walls are leaning toward the outside, as would be
the case with hydroclectric dams built on natural sites.

Lemma 4.1

Suppose the ratio ¥'(a)/Na) is a nonincreasing function of a for all a € |0, U). Suppose also
that v(x,) is concave nondecreasing. Then w,, 1(y,) is concave nondecreasing.
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Proof

It suffices to show that v,(zs(y)) A ©(U)) is concave nondecreasing for any value d > 0
of the random variable D,. This, in turn, is true if z4(y,) is concave nondecreasing. Now
za(y)) = O(a, +d) and y, = O(a,), so we have

dzg _ Datd)

Zd(yt):c—i}:——ﬂ—(ar_

)

showing that z4(y,) is a nondecreasing function. Applying the chain rule, we get

ood L, da Y +d) [Vard) V@)
W00 = a0 = By [ Sard Sy

where the last inequality follows because ¥ (a)/9(a) is nonincreasing, by hypothesis. ]

Lemma 4.2
Suppose the ratio V¥ (a)/9(a) is a nonincreasing function of a for all a € [0, U]. Suppose also
Vel (X7a1) is concave nondecreasing, and hy; > ha.. Then v,(x,) is concave nondecreasing, for
f=tilpeandy

Proof

By induction on #. The result is true for ¢ = T + 1 by hypothesis. Suppose now vy (Xp) is
concave nondecreasing. Then wy(y,) is concave nondecreasing too, by Lemma (4.1). Now,
from eq. (1) and (19), we have that

vi(x) = Ogai(x Py — yo) + Bwia1 (1)-

But the function p,(x; — y;) + Bwe () is concave on its domain C, where
C ={(,y):0<x<0OW), 0<y Lalh

Concavity of v,(x;) therefore is a well-known result. See, e.g., pp. 525-526 of Heyman and
Sobel (1984). Finally, for x’ > x, the action set [0, x'] contains the set [0, x]. This implies v;(x,)
is nondecreasing.

This result is remarkable, because in the volumetric domain, the functions V(s;) are not
concave (see Figure 3d). In the energy domain, however, the problem recovers the same
essential properties that were exploited in Gessford and Karlin (1958), and Lamond et al.
(1995), although our results are not restricted to the special case of constant turbine efficiency.

Theorem 4.3
Suppose the conditions of lemmas 4.1 and 4.2 are satisfied. Then for eacht =1,...,7T, there
are two critical numbers 91, and 9y, given by

9, = arg max —h;y +[w ; 21
| Vit gOSyS@(U) iy + Bwi (v) (21)
|
‘ for i = 1,2, such that 91, < 95 Moreover, an optimal set of actions is given by the decision
rule ) R
Xt it 0 <x <Ju,
S if 910 <x <91+ O;

(22)

yix) =

X —Q 9 +0 <x <Iu+Q
P if 9o+ 0 <x, < U.

hﬁhl,}u\:—#‘}u Zy LiL I
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Table 1: Interpretation of optimal decision rules

Zone State (s,) Action (a,) Explanation
1 10, ay,1 s, no energy production
2 ldy, §,) ay, discharge to d,, (£, < Q,)
3 [$15 32 @,(s) produce energy £, = Q,
4 [$,, U] a,, discharge to d,, (E, > Q)

Proof
The inequality 9, < 9, is obvious.

For x;, < Qi, we have p;(x; — y;) = hy,(x, — y,). There are two cases: if x, < $1;, then the
optimal action is y;' = x,, else it is y} = 9y,.

For x; > Q,, the function p,(x; — y,) has two linear pieces. There are two main cases. If
x, > 920 + O, then the optimal action is y* = 9,,, else there are three subcases. If X; < 91, then
¥ =x. If $1, < x; < 91, + O, then y; = 91, Finally, if x, > $, + O, then v =x— Q. In all
cases, the optimal action is given by eq. (22). O

To transform back to volumetric units, it is convenient to define the function ¢(s;) giving the

action g, such that E(s,,a,) = Q,. This action thus corresponds to a hydroelectric production
of exactly Q, units of energy. When storage is insufficient, we define @;(s;) = 0. Then

([),(S,) _ { (()_‘)~1(®(St) - Q) if Os,) > O, 23)

else.

For example, with constant turbine efficiency, we have
Qi (s) = (s — Qt/90)+-

When the turbine efficiency is an affine function of storage, we have from eq. (17) and (16)
that a = @,(s,) satisfies the quadratic equation

0
éaz +0pa—C, =0,

where 9
C, = 0ps, + =10
provided C, > 0. Thus we have in this case

—0 + /62 +26,C,

0,

Qi(s1) =

The optimal decision rules can now be described.
Corollary 4.4
Suppose the conditions of Theorem 4.3 are satisfied. Then for each t = 1,...,T, there are two

critical numbers &\, and ay,, given by

Gy = arg  max —hii®(a) + PWyi(a), (24)

urther reproduction prohibited without permission.




STOCHASTIC OPTIMISATION OF A HYDROELECTRIC RESERVOIR 6l

Figure 3: Structure of optimal solutions
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for i = 1,2, such that &, < ao;. Moreover, with
% cos'f "
S = O (O(ay) + Q) 25)

the optimal decision rules are given in Table 1.

This result has important consequences. First, the optimization of eq. (1) for all states
s, € [0,U] can be performed simply by doing a pair of line searches to find &, and &y,
Next, the optimal decision rules have a simple interpretation, with the state space in period 1
partitioned in four zones, as in Table [. Finally, the special structure of ,(s,), plotied in Figure
3a, can be exploited to derive a suitable piecewise polynomial approximation of the function
Vi(so).

Indeed, replacing «, by v:(s;) in eq. (1), and using (19, 20), we have

Vi(s) = A(sy) + Bi(sy),

where

Ai(s) = pr (G(St) = G(Yt(st)))
Bi(s) = BWi (Yi(s))).

Using Table 1, we can get a separate expression for these functions in each of the four zones.
An illustrative example is plotted in Figure 3. One can see easily, as in Figure 3b, that A,(s,) is
constant in zones | and 3. Furthermore, if the potential encrgy function ©(s,) is a polynomial,
then A,(s,) is polynomial in zones 2 and 4. Similarly, B(s,) is constant in zones 2 and 4, as in
Figure 3c, but it is non polynomial in zones | and 3.

The resulting expressions for V,(s,) are given in Table 2, where the constants

Ky = —h1©(ay,) + PWesi (a1,

Ky = hy,Qp — ho(©(ag) + Q) + BWii1(@2r)
are used. If O(s,) is a polynomial then V,(s,) naturally has a polynomial representation in zones
2 and 4. In zones 1 and 3, however, a piecewise polynomial approximation using splines is

suitable. ln specifying a spline approximation over an intcrval, however, one has to decide
boundary conditions should be imposed at the end points. When the first derivative of the
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Table 2: Expressions for the function V{(s)

Zone State (s,) Vi(s) Polynomial representation
1 [0,a,,] BW,,(s) spline approximation
2 [3y, §1,] h,0Gs) + K, exact polynomial
3 IS8 BW,, (o(s)) + hy,0, spline approximation
-+ [$,, Ul h,0(s) + Ky, exact polynomial

Table 3: Existence and boundary conditions for each zone

Boundary conditions for splines

Zone State Existence Left Right
1 [0, a,,] a,>0 not-a-knot not-a-knot if @, = U
else Vi(a,) = h;d(a,,
2 [y, 5] a,<U N/A N/A
3 [$1p §2,] §1,<Uand not-a-knot if 4,, = 0 not-a-knot if § |, = U
Gy, >0 else Vi(§,) = h0(5,)  else V{(§,) = hy9(§,,)
4 [$5, Ul §,,<U N/A N/A

function is known, its value at an end point can be used as a boundary condition. Otherwise,
the ‘not-a-knot’ condition is preferred. Sec De Boor (1978).

It is straightforward to sec that the functions V,(s,) are continuous. If the random variables
D, are continuous, then the functions Wy, (a,) are differentiable everywhere. This is not always
the case for V,(s,). For example, if Vi (spy1) = 0 identically, then the optimal decision rule for
period 77is ¥y (s7) = O for all sy € [0, U]. Then Vy(sy) = pr(©(sy)), which is not differentiable
at 57— © Q). We note that &y = dyp — 0 in this case, and that the maximum was found
at the left boundary of eq. (24). We also obscrve that the zones 1 and 3 do not exist, so that
no spline approximations are required in this special case.

L.emma 4.5
The existence conditions for each zone are given in Table 3, along with the correct boundary
conditions for the spline approximations.

Proof
The zone existence conditions are trivial. When both zones 1 and 2 exist, we have 0 < &, < U,
in which case

—h, & @y,) + BW;H(&U) =0. (26)

From Table 2, this implies continuity of V/(s;) at s, = &;,. Hence the spline approximation
in Zone | should be specified with a ‘not a knot” condition on the left (at s, = 0) and with
V(@) = h,9@,,) on the right.

Similarly, existence of Zone 3 implics that of Zone 2. When 0 < &;, < U, continuity of the
derivative on the left of the interval, at s, = §,,, is verified directly from Table 2, using the
chain rule:

BW/, (@100 (1))

- Lia
@,(alt) Vo hll® (S]I)’

BWII+](&II)(P;(§II) =

where the first equality follows from

¢ = O'(51)/0' (@)
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and the second equality follows from eq. (26). Further, when 0 < ay < U, we have
*112/®/(&2r) * BW,/H (an) = 0. (27)

Then continuity of the derivative on the right of the interval, at s, = §,, is verified in the same
way, using cq. (27). Thercfore, the spline approximation in Zone 3 should be specified with
V/(31) = hy03),) on the left, and V/(85,) = hyy9(3,) on the right. tJ

5. DYNAMIC PROGRAMMING ALGORITHM

We now present a dynamic programming algorithm to solve eq. (1) for the model of §3, using
the results of §82—4. For j = 1,2,3,4, let m; be the number of subintervals in Zone j. If Zone j
does not exist, set m; = 0. For j = 2,4, when Zone j exists, we have m; = 1. For j = 1,3, the
parameters m; and m3 nced to be specified in the model data. In the notation of §2, the total
number of intcrvals is then

m+ 1 = my +my +ms + my,

and there are m + 2 break points, with by = 0 and b,y = U. Let also o; denote the index of
the first break point of Zone j. Then ®; = 0 and @; = @; | +m;_y, for j = 2,3,4,5, so that
Zone j is the interval [bgy, by, 1.

Algorithm ZONE for Continuous Dynamic Programming

I. Settr=T+1.

2. Piecewisc polynomial approximation of terminal rewards Vo (s7(): choose a number m of
grid points b;, i = 1,...,m, such that 0 = by < by <... < b, < b,y = U, and obtain the
cocfficients (,(/k) of the polynomials p; 4 (x) ineq. (4), fork =0,...,nand i = I,...,m+1.

3. Sett=1¢— 1.1 t =0 stop.

4. For j = 1,2, perform a line search to find &; in eq. (24). At cach itcration of the linc scarch,
evaluate the function W, (a,) of eq. (20) using cq. (14) and (11).

5. Construct a piecewise polynomial approximation for V,(s,) based on tables 2 and 3. If zones
1 and 3 exist, choose equally spaced break points for the spline approximations and cvaluate
W1 (+) at the interior break points using eq. (14) and (11).

6. Go to 3.

The computational complexity of the above DP algorithm is dominated by the number of
evaluations of the expected value function W, (-). There are 7" major iterations. Each line
scarch, at Step 4, requircs at most N function evaluations (say), and the spline constructions at
Step 5 requirc my +m3 —2 evaluations. Then the complete algorithm requires 7' X (2N +my +n3)
evaluations of W, (-). Detailed algorithms are given in Everitt (1987) for the line scarch, and
in De Boor (1978) for the spline approximation. The number N of steps of the line scarch
depends on the method uscd. For example, with the Golden Scction method, the number of
steps required to narrow down the search to an interval of width ¢ is N = ln(f/U)/ln(l —g)
where g = (v/5 — 1)/2 is the Golden Ratio.

6. NUMERICAL TESTS

We now illustrate the procedure with a numerical example. We implemented our DP algorithm
in the C language on an IBM Risc-6000 computer, Model 3BT. We present numerical results for
a continuous version of the model trecated in Lamond and Bachar (1998), where 30 cascs were
considered for the natural inflows (i.c., 10 means X 3 coefficicnts of variation), under discretized
normal and lognormal distributions. Here, we present only three cases, corresponding to cases
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Table 4: Data for natural inflow distributions

Case n o/ r A
10 152 0.15 44 0.28947
11 152 0.25 16 0.10526
12 152 0:35 8 0.05263

10, 11 and 12 of Lamond and Bachar (1998), and we use the continuous gamma distribution,
instead.

As in Lamond and Bachar (1998), we take a discount factor B = 0.95. The reservoir capacity
is U = 400 water units. The turbine efficiency function is 9(s) = | +0.0025s, corresponding
to cfficiencies of %(0) = I and W(U) = 2, respectively, at minimum and maximum storage.
Thus our model represents a hydroclectric system with rather important head variations. We
assume the primary demand is Q, = 160 cnergy units, with the primary and secondary prices
hy = 0.375 and hy, = 0. 125, respectively, in all periods. Then our model satisfies all the
assumptions of §4 and our DP algorithm ZONE is applicable. We choose the number of
periods 7" = 200 which, for all practical purposes, corresponds to an infinite horizon. Indeed,
the largest one-period revenue is 122.5, corresponding to the conversion of a full reservoir
into clectricity. The difference between V(s), with 77 = 200, and the infinite horizon value is

bounded by -

0.95
SX — .086
122.5 x ]70.95<00 !

and computations show that the optimal infinite horizon value is greater than 1280 for all
s€8.

As in Gessford and Karlin (1958), we assume the natural inflows follow a gamma distribution
with integer shape parameter r. For simplicity, we suppose the parameters arc the same in all
periods, i.e.,

D, ~ Gamma(r, ),

for t = 1,...,T. Then the expected inflow is (L = r/X and the variance is 6 = r/A?, giving a
coefficient of variation of 6/u = | /\/r. For large r, this approximates a normal distribution.
Data for our three inflow cases are given in Table 4.

The gamma density function is, for x > 0:

| 1 2
fx) = @R (28)
(r—1)
Writing F_;(x) = f(x) as in §2, we obtain the primitives F,(x), n = 0, 1,2,..., analytically, as
follows.
Lemma 6.1
Define vy = 1 and vy, = 0, for k = 2,3,...,r. Moreover, for n = 0,1,2,..., define

inductively the cumulative sums
k
’Yn,k = Z ’Ynfl,e .
€=1

Then, forn =0,1,2,..., and x > 0,

r—1

1 & 0 {n—t,r - N i
Fa) = = | S I - ey Betowt | o)

A
=0 £=0
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Proof
By induction on n. The result is trivially true for n = —1. We also observe that for all n > 0,

1
F,(0) = W[(*I)HYHJ - (*])”’Yn,r] =0.

as required. Next, straightforward algebra shows that cq. (29) satisfics Fl(x) = Fpy(x), and
the result follows. 0

Before using eq. (29) to integrate polynomials of degree n, one can compute all constant terms
with about n(n + 1)/2 additions and n(n+ 1)/2+ nr divisions. Next, evaluation of the functions
Fe(x), for € =0,...,n, requires about n(n + 1)/2 + nr pairs of additions and multiplications,
plus one evaluation of the exponential function. Hence each time Step 3 of algorithm PRIM
is executed, i.e., at Step 5 of algorithm ZONE, the exponential function is executed m + 1
times and there are (m+ 1) X [n(n + l)/2 + nr] pairs of additions and multiplications. Cubic
splines are often used in practice, giving n = 3. But from Table 4, we have r € {8,16,44} in
our test cases, giving respectively 30(m + 1), 78(m + 1) and 162(m + 1) pairs of additions and
multiplications every time the function Wy, (q,) is evaluated.

The primary purpose of the numerical tests is to cvaluate the performance of our continuous
DP algorithm ZONE by comparison with the naive, discrete DP algorithm (often called value
iteration) shown in the appendix. As in Lamond and Bachar (1998), we usc a value itcration
algorithm with integer state, action and inflow scts {0, 1,2,...,400}. With f(i) given in cq.
(28), the discrete inflow distribution is, for i = 0,1,2,.. .,

ay= PO g=F@] )

=0

There are thus three sources of discretization ecrror in the value iteration algorithm. Our
continuous DP algorithm ZONE, however, avoids inflow discretization because the integration
procedure PRIM of §2 is exact. Nonetheless, there are two sources of truncation crror present.
One is duc to the spline approximation with a finite number of break points in zones 1 and 3
(analogous to state discretization). The other is due to the finite number of iterations in the line
scarch procedure (analogous to action discretization), which we implemented using the Golden
Section method (see, e.g., Everitt (1987)).

Another important purpose of the tests is to demonstrate the much higher quality of solutions
obtained by the ZONE algorithm, regarding the accuracy of V/(s;) and the concavity of v,(x,).
The comparison is made with value iteration but also with a continuous DP algorithm in
which cubic splines are used naively to approximate V,(s,) (without applying the “not-a-knot”
condition at the non-smooth points). We denote the latter as the SPLINE algorithm. The
SPLINE algorithm is similar to ZONE except that the piecewise polynomial approximation at
Step 5 is constructed with m + 1 equal intervals on [0, U], and ignoring the four zones of &4,
In a sense, value iteration is a simple, very coarse, brute force method. SPLINE uses the exact
PRIM integration procedurc but its piecewise polynomial approximation, although cfficient, is
not really adequate for our model, due to the discontinuities of the second derivative at certain
points (see Figure 4). On the other hand, ZONE uses exact PRIM integration with efficient
and accurate piccewise polynomial approximation.

To make a fair evaluation of the methods with respect to CPU time, all three algorithms
were coded in C by the same programmer, and all three codes were exccuted on the same
machine. Moreover, the precision parameters of ZONE and SPLINE (i.e., N for linc scarch,
m,, my and m for spline approximations) were calibrated to give the function V,(s)) with the
same accuracy as with value iteration. The line searches stopped when &; was within 0. 1 units
of the true optimal solution (golden section search was used by both ZONE and SPLINE).
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Table 5: Summary of numerical results

Value Iteration SPLINE ZONE

Case  Error  CPU m+ 1 Error CPU  m, =m, Error CPU

10 012 164.73 14 0.12 224.94 4 0.13 115:23
11 0.15 163.25 13 0.13 100.53 4 0.17 47.23
12 020  164.88 12 0.18 67.67 3 0.15 33.14

Figure 4:  Concavity of v,(x;) and accuracy of v|(x,)

v1 (1) v1(@1)

a) Value
[teration

b) SPLINE

c) ZONE

This was considered accurate enough since value iteration finds an integer solution, thus within
0.5 units of the true optimal solution. To calibrate the number of break points for the spline
approximations, we estimated the true optimal function V;(s). This was accomplished through
an initial run with 7 = 200 DP iterations, using an accuracy of 0. 0001 for the line scarches, and
with m; = m, = 29 intervals for ZONE and m + 1 = 32 intervals for SPLINE. Both mecthods
gave very near solutions. The deviation between the solution obtained by value iteration and
the true optimal value is less than 0.2 in all three inflow cases. With V,(s,) > 1280 for all
s € 8, this gives a relative error of 0.016%.

Setting 7" = 200 iterations and a precision of 0.1 for the line searches, we successively
solved SPLINE and ZONE with a decreasing number of intervals. The numerical results are
summarized in Table 5. Tt gives the smallest number of intervals needed for a deviation of at
most 0.2 from the optimal solution, along with the largest absolute deviation from the true
optimal solution, and the CPU time in scconds. The efficiency of spline approximations is

ol Lal ZBLi.ISI
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impressive, with 12 to 14 inicrvals for the SPLINE method, and only three or four intervals
per zonc for the ZONE method. The ZONE method has the smallest CPU time. Value iteration
has the longest, except for Case 10, for which SPLINE is slower.

While all three methods give comparable accuracy of the function V(s;), the quality of the
solutions varies considerably with respect to concavity of the function vi(x;), in the energy
domain, and accuracy of its first derivative v{(x;). As shown in Figure 4a, the derivative is
very jumpy in Zone 3 for the function v;(x;) obtained by value itcration, because of the effect
of action discretization. Moreover, from Figure 4b we sce that the derivative v/, (x7) computed
with the SPLINE algorithm is so rugged and irregular that v{(x;) is not monotone, therefore
violating the concavity property of v;(x;). This is due to the fact that the spline approximation
assumes continuity of the second derivative everywhere, which is not truc at &y, §), and 3.
However, Figure 4¢ shows that the situation is entirely different with our ZONE algorithm,
where v{(x|) is monotone nonincreasing and therefore v(x;) is concave, as required by Lemma
4.1.

7. CONCLUSION

In conclusion, we derived a new method (PRIM) for computing the expectation of a piccewise
polynomial function and we extended previous resuits of Drouin ct al. (1996), Gessford and
Karlin (1958), Lamond and Lang (1996), and Lamond et al. (1995) on the structure of optimal
solutions for a single reservoir and hydroplant with piecewise linear revenues. We used these
theoretical results to obtain a continuous DP algorithm (ZONE) that is faster and more accurate
than both discrete DP (value iteration) and a continuous DP method using splines on a fixed
grid (SPLINE). While spline approximations on a fixed grid and a fixed quadrature rule are
justified when the reward function is sufficiently smooth as in Foufoula-Georgiou and Kitanidis
(1988), Johnson ct al. (1993), and Philbrick and Kitanidis (2001), our work suggests they are
not well-suited when the rewards are piecewise linear.

Finally, we note that further CPU time reduction could be achicved by approximating the
primitive functions F,(x) (for example, using splines) rather than using cxact evaluation of
eq. (29). Another refinement would be to use a faster line search algorithm such as Newton’s
method.
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APPENDIX

We briefly review here the value iteration algorithm used in our numerical tests. We have the state
set § = {0,1,2,...,U} and the action sets A (s) = {0,1,2,...,s}, for s € S. The natural inflow

probabilities are o; = P(D, = i) = f(i)/Q where Q = F,OZ(())O.[(/'), with f(x) given in eq. (28). Let also

_ i
1

I ; ; : . ; ;
o; = 1 — ) . o;. The immediate rewards r,(s,a) in period ¢ are given by eq. (19), and the terminal
rewards Vyy (/s) are given data. The value iteration algorithm then proceeds as follows. See, ¢.g., Puterman
(1994).

I et =11

2. Fora=0; 1, 2,5 compute

U—a—1

Wia(@ = Y 0Vi(@+))+ou_oV ().

=0
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3. Fors =0,1,2,...,U, compute

Vi(s) = myzllx (s, a) + W1 (a).
ac (s)

4. Lett =1t—1.If t = 0 stop.
5. Go to 2.

The maximization at Step 3 is done by enumerating all feasible actions (a = 0, 1,2,...,s), without
exploiting the special structure of optimal solutions.
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